Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
2.
Infection ; 49(5): 927-934, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1384715

ABSTRACT

PURPOSE: To evaluate the diagnostic reliability and practicability of self-collected oropharyngeal swab samples for the detection of SARS-CoV-2 infection as self-sampling could enable broader testing availability and reduce both personal protective equipment and potential exposure. METHODS: Hospitalized SARS-CoV-2-infected patients were asked to collect two oropharyngeal swabs (SC-OPS1/2), and an additional oropharyngeal swab was collected by a health care professional (HCP-OPS). SARS-CoV-2 PCR testing for samples from 58 participants was performed, with a 48-h delay in half of the self-collected samples (SC-OPS2). The sensitivity, probability of concordance, and interrater reliability were calculated. Univariate and multivariate analyses were performed to assess predictive factors. Practicability was evaluated through a questionnaire. RESULTS: The test sensitivity for HCP-OPS, SC-OPS1, and SC-OPS2 was 88%, 78%, and 77%, respectively. Combining both SC-OPS results increased the estimated sensitivity to 88%. The concordance probability between HCP-OPS and SC-OPS1 was 77.6% and 82.5% between SC-OPS1 and SC-OPS2, respectively. Of the participants, 69% affirmed performing future self-sampling at home, and 34% preferred self-sampling over HCP-guided testing. Participants with both positive HCP-OPS1 and SC-OPS1 indicating no challenges during self-sampling had more differences in viral load levels between HCP-OPS1 and SC-OPS1 than those who indicated challenges. Increasing disease duration and the presence of anti-SARS-CoV-2-IgG correlated with negative test results in self-collected samples of previously confirmed SARS-CoV-2 positive individuals. CONCLUSION: Oropharyngeal self-sampling is an applicable testing approach for SARS-CoV-2 diagnostics. Self-sampling tends to be more effective in early versus late infection and symptom onset, and the collection of two distinct samples is recommended to maintain high test sensitivity.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Health Personnel , Humans , Reproducibility of Results
3.
Hemasphere ; 5(7): e603, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1301392

ABSTRACT

The clinical and immunological impact of B-cell depletion in the context of coronavirus disease 2019 (COVID-19) is unclear. We conducted a prospectively planned analysis of COVID-19 in patients who received B-cell depleting anti-CD20 antibodies and chemotherapy for B-cell lymphomas. The control cohort consisted of age- and sex-matched patients without lymphoma who were hospitalized because of COVID-19. We performed detailed clinical analyses, in-depth cellular and molecular immune profiling, and comprehensive virological studies in 12 patients with available biospecimens. B-cell depleted lymphoma patients had more severe and protracted clinical course (median hospitalization 88 versus 17 d). All patients actively receiving immunochemotherapy (n = 5) required ICU support including long-term mechanical ventilation. Neutrophil recovery following granulocyte colony stimulating factor stimulation coincided with hyperinflammation and clinical deterioration in 4 of the 5 patients. Immune cell profiling and gene expression analysis of peripheral blood mononuclear cells revealed early activation of monocytes/macrophages, neutrophils, and the complement system in B-cell depleted lymphoma patients, with subsequent exacerbation of the inflammatory response and dysfunctional interferon signaling at the time of clinical deterioration of COVID-19. Longitudinal immune cell profiling and functional in vitro assays showed SARS-CoV-2-specific CD8+ and CD4+ T-effector cell responses. Finally, we observed long-term detection of SARS-CoV-2 in respiratory specimens (median 84 versus 12 d) and an inability to mount lasting SARS-CoV-2 antibody responses in B-cell depleted lymphoma patients. In summary, we identified clinically relevant particularities of COVID-19 in lymphoma patients receiving B-cell depleting immunochemotherapies.

4.
Respir Res ; 22(1): 119, 2021 Apr 23.
Article in English | MEDLINE | ID: covidwho-1202183

ABSTRACT

BACKGROUND: In the absence of PCR detection of SARS-CoV-2 RNA, accurate diagnosis of COVID-19 is challenging. Low-dose computed tomography (CT) detects pulmonary infiltrates with high sensitivity, but findings may be non-specific. This study assesses the diagnostic value of SARS-CoV-2 serology for patients with distinct CT features but negative PCR. METHODS: IgM/IgG chemiluminescent immunoassay was performed for 107 patients with confirmed (group A: PCR + ; CT ±) and 46 patients with suspected (group B: repetitive PCR-; CT +) COVID-19, admitted to a German university hospital during the pandemic's first wave. A standardized, in-house CT classification of radiological signs of a viral pneumonia was used to assess the probability of COVID-19. RESULTS: Seroconversion rates (SR) determined on day 5, 10, 15, 20 and 25 after symptom onset (SO) were 8%, 25%, 65%, 76% and 91% for group A, and 0%, 10%, 19%, 37% and 46% for group B, respectively; (p < 0.01). Compared to hospitalized patients with a non-complicated course (non-ICU patients), seroconversion tended to occur at lower frequency and delayed in patients on intensive care units. SR of patients with CT findings classified as high certainty for COVID-19 were 8%, 22%, 68%, 79% and 93% in group A, compared with 0%, 15%, 28%, 50% and 50% in group B (p < 0.01). SARS-CoV-2 serology established a definite diagnosis in 12/46 group B patients. In 88% (8/9) of patients with negative serology > 14 days after symptom onset (group B), clinico-radiological consensus reassessment revealed probable diagnoses other than COVID-19. Sensitivity of SARS-CoV-2 serology was superior to PCR > 17d after symptom onset. CONCLUSIONS: Approximately one-third of patients with distinct COVID-19 CT findings are tested negative for SARS-CoV-2 RNA by PCR rendering correct diagnosis difficult. Implementation of SARS-CoV-2 serology testing alongside current CT/PCR-based diagnostic algorithms improves discrimination between COVID-19-related and non-related pulmonary infiltrates in PCR negative patients. However, sensitivity of SARS-CoV-2 serology strongly depends on the time of testing and becomes superior to PCR after the 2nd week following symptom onset.


Subject(s)
COVID-19/blood , COVID-19/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Critical Care/statistics & numerical data , Female , Hospitalization/statistics & numerical data , Humans , Immunoglobulin G/analysis , Immunoglobulin M/analysis , Male , Middle Aged , Pandemics , Polymerase Chain Reaction , Retrospective Studies , Seroconversion , Serologic Tests , Tomography, X-Ray Computed , Young Adult
5.
Viruses ; 13(2)2021 02 03.
Article in English | MEDLINE | ID: covidwho-1060774

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), comprises mild courses of disease as well as progression to severe disease, characterised by lung and other organ failure. The immune system is considered to play a crucial role for the pathogenesis of COVID-19, although especially the contribution of innate-like T cells remains poorly understood. Here, we analysed the phenotype and function of mucosal-associated invariant T (MAIT) cells, innate-like T cells with potent antimicrobial effector function, in patients with mild and severe COVID-19 by multicolour flow cytometry. Our data indicate that MAIT cells are highly activated in patients with COVID-19, irrespective of the course of disease, and express high levels of proinflammatory cytokines such as IL-17A and TNFα ex vivo. Of note, expression of the activation marker HLA-DR positively correlated with SAPS II score, a measure of disease severity. Upon MAIT cell-specific in vitro stimulation, MAIT cells however failed to upregulate expression of the cytokines IL-17A and TNFα, as well as cytolytic proteins, that is, granzyme B and perforin. Thus, our data point towards an altered cytokine expression profile alongside an impaired antibacterial and antiviral function of MAIT cells in COVID-19 and thereby contribute to the understanding of COVID-19 immunopathogenesis.


Subject(s)
COVID-19/immunology , Lymphocyte Activation , Mucosal-Associated Invariant T Cells/immunology , Adaptive Immunity , COVID-19/physiopathology , Cytokines/metabolism , Female , Granzymes/metabolism , HLA-DR Antigens , Humans , Interleukin-17/metabolism , Killer Cells, Natural/immunology , Male , Mucosal-Associated Invariant T Cells/metabolism , Severity of Illness Index , T-Lymphocyte Subsets/immunology , Tumor Necrosis Factor-alpha/metabolism
6.
Eur J Clin Microbiol Infect Dis ; 40(4): 859-869, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-898040

ABSTRACT

The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide. Bacterial co-infections are associated with unfavourable outcomes in respiratory viral infections; however, microbiological and antibiotic data related to COVID-19 are sparse. Adequate use of antibiotics in line with antibiotic stewardship (ABS) principles is warranted during the pandemic. We performed a retrospective study of clinical and microbiological characteristics of 140 COVID-19 patients admitted between February and April 2020 to a German University hospital, with a focus on bacterial co-infections and antimicrobial therapy. The final date of follow-up was 6 May 2020. Clinical data of 140 COVID-19 patients were recorded: The median age was 63.5 (range 17-99) years; 64% were males. According to the implemented local ABS guidelines, the most commonly used antibiotic regimen was ampicillin/sulbactam (41.5%) with a median duration of 6 (range 1-13) days. Urinary antigen tests for Legionella pneumophila and Streptococcus peumoniae were negative in all cases. In critically ill patients admitted to intensive care units (n = 50), co-infections with Enterobacterales (34.0%) and Aspergillus fumigatus (18.0%) were detected. Blood cultures collected at admission showed a diagnostic yield of 4.2%. Bacterial and fungal co-infections are rare in COVID-19 patients and are mainly prevalent in critically ill patients. Further studies are needed to assess the impact of antimicrobial therapy on therapeutic outcome in COVID-19 patients to prevent antimicrobial overuse. ABS guidelines could help in optimising the management of COVID-19. Investigation of microbial patterns of infectious complications in critically ill COVID-19 patients is also required.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antimicrobial Stewardship , Bacterial Infections/epidemiology , COVID-19/epidemiology , Practice Patterns, Physicians'/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Ampicillin/therapeutic use , Antifungal Agents/therapeutic use , Aspergillosis/drug therapy , Aspergillosis/epidemiology , Azithromycin/therapeutic use , Bacterial Infections/drug therapy , Cohort Studies , Coinfection/epidemiology , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/epidemiology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , Female , Germany/epidemiology , Humans , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Linezolid/therapeutic use , Male , Meropenem/therapeutic use , Middle Aged , Piperacillin, Tazobactam Drug Combination/therapeutic use , Retrospective Studies , SARS-CoV-2 , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Streptococcal Infections/drug therapy , Streptococcal Infections/epidemiology , Sulbactam/therapeutic use , Vancomycin/therapeutic use , Young Adult
7.
Notf Rett Med ; 23(8): 578-586, 2020.
Article in German | MEDLINE | ID: covidwho-661406

ABSTRACT

Due to the increasing number of COVID-19 infections worldwide, all hospitals are faced with the challenge associated with the pandemic. In particular, emergency rooms must prepare and implement completely new workflows. This applies in particular to patient screening and selection (triage). Close cooperation with other specialist areas such as hygiene, infectiology or virology is also necessary in order to implement appropriate treatment concepts before, during and after the diagnosis is completed. In addition, communication and quality and risk management are highly relevant in addition to the clinical aspects. This article uses COVID-19 as an example to describe how emergency rooms can prepare for a pandemic.

8.
J Clin Med ; 9(5)2020 May 18.
Article in English | MEDLINE | ID: covidwho-291379

ABSTRACT

The evolving dynamics of coronavirus disease 2019 (COVID-19) and the increasing infection numbers require diagnostic tools to identify patients at high risk for a severe disease course. Here we evaluate clinical and imaging parameters for estimating the need of intensive care unit (ICU) treatment. We collected clinical, laboratory and imaging data from 65 patients with confirmed COVID-19 infection based on polymerase chain reaction (PCR) testing. Two radiologists evaluated the severity of findings in computed tomography (CT) images on a scale from 1 (no characteristic signs of COVID-19) to 5 (confluent ground glass opacities in over 50% of the lung parenchyma). The volume of affected lung was quantified using commercially available software. Machine learning modelling was performed to estimate the risk for ICU treatment. Patients with a severe course of COVID-19 had significantly increased interleukin (IL)-6, C-reactive protein (CRP), and leukocyte counts and significantly decreased lymphocyte counts. The radiological severity grading was significantly increased in ICU patients. Multivariate random forest modelling showed a mean ± standard deviation sensitivity, specificity and accuracy of 0.72 ± 0.1, 0.86 ± 0.16 and 0.80 ± 0.1 and a receiver operating characteristic-area under curve (ROC-AUC) of 0.79 ± 0.1. The need for ICU treatment is independently associated with affected lung volume, radiological severity score, CRP, and IL-6.

SELECTION OF CITATIONS
SEARCH DETAIL